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Abstract

A new, nonoscillatory upwind scheme is devel-
oped for the multidimensional convection equation.
The scheme consists of an upwind, nonoscillatory in-
terpolation of data to the surfaces of an intermedi-
ate finite volume; a characteristic convection of sur-
face data to a midpoint time level; and a conser-
vative time integration based on the midpoint rule.
This procedure results in a convection scheme capa-
ble of resolving discontinuities neither aligned with,
nor convected along, grid lines.

1. Introduction

The aerospace industry’s wide acceptance of
computational fluid dynamics is due mainly to the
successful calculation of transonic flows.!?® Shock
capturing schemes, both upwind and central differ-
enced, have revolutionised the way discontinuous
flows are investigated.

In general it is true that an optimally tuned
and gridded central differenced scheme can produce
steady state solutions comparable to those produced
by upwind schemes. It is equally true that upwind
methods are superior in their ability to resolve un-
steady flows because central differenced schemes re-
quire an artificial dissipation term that is usually
tuned for steady state performance.

A number of impressive upwind methods have
been developed for the one-dimensional convection
equation; many of these schemes have found their
way into the numerical solution of the Euler and
Navier-Stokes equations.**®> Most of these schemes,
with the exception of a few, are second order accu-
rate in smooth regions and first order accurate at
extremas. Because this first order behavior can ex-
cessively damp unsteady calculations, methods that
are uniformly second order accurate are needed.®”

In general, one-dimensional upwind schemes are
only formally extended to multidimensions. The
most common means of extension are the one-step
Lax-Wendroff, the fractional step, and the multistep
Runga-Kutta schemes, each with its own benefits
and drawbacks. The one-step Lax-Wendroff scheme,
while remaining conservative, requires the evalua-
tion of cross-derivative terms whose effects on

accuracy and shock capturing have not been fully
understood or exploited.  The fractional step
method, by far the most popular means of multi-
dimensional extension, is not strictly time conserva-
tive, since all fluxes are not evaluated at the same
time level. The multistep Runga-Kutta scheme is
probably the most efficient means of extension but
unfortunately suffers from an inherent dispersion er-
ror that can introduce asymmetric behavior.

The development of true multidimensional up-
wind schemes has only recently received the at-
tention previously afforded to formal extemsioms.
Davis® has developed a rotated scheme that upwinds
normal to shocks rather than along grid lines, while
Powell and van Leer® have recently formulated a
convection scheme that obtains its multidimensional
treatment through a residual distribution step.

The present approach, in the spirit of van Leer’s
MUSCL scheme,® is to insure nonoscillatory be-
havior through an uniformly second order accurate
nonoscillatory interpolation of data to an intermedi-
ate finite volume. A multidimensional treatment is
achieved through a characteristic convection of the
surface data to a midpoint time level. Strict con-
servation is assured through a midpoint rule time
integration.

2. Analysis

To illustrate the potential difficulties associ-
ated with formally extending one-dimensional up-
wind concepts to higher dimensions, it is sufficient
to investigate only the one-dimensional linear con-
vection equation:

du du
¢ +a 32 = 0 (1)
The convection of various gradients (ellipse,
top hat, and triangle) are solved numerically
on a uniform grid, using a centered Runga-
Kutta scheme with artificial dissipation, a one-step
TVD Lax-Wendroff, and a multistep TVD Lax-
Wendroff /Runga-Kytta scheme. Each of the gra-
dients are constructed over a width of twenty mesh



cells and have a nondimensional amplitude of one
unit and a length of one half.
Given the m-stage Runga-Kutta scheme

u(t) = 4" — o, AtR®
u(® = " — azAtR(V

(2)

ul™ = y® — o, AtR(m-1)

un+l = u(m)

where a, ag, etc. are scalar constants and At is the
time step. The spatial difference term

ad
R= 3": (44173 = wi-1/3)/Az (3)

can be constructed from a central difference approxi-
mation with an added nonlinear artificial dissipation
term? or a flux limited approximation

Uipr/z = i +0.54,A% u; (4)

where the convection speed a > 0 is constant; At
is a first order forward difference operator; and ¢; is
the TVD limiter chosen, most often, to take one of
the following forms
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corresponding to van Leer’s!! continous; Roe’s’
Minmod and Superbee; and Liou’s!® exponential
limiters, respectively.

These limiters are also used in the construction
of Sweby’s'* second-order TVD Lax-Wendroff for-

mulation

uPtl = u? — VAT —0.5A7¢(1 - v)vaty; (6)

where v = aAt/Az and A~ is a first order backward
difference operator.

To investigate the performance of these
schemes, a number of test calculations were per-
formed for eighty time steps at a Courant number of
one half. The results from a second order, centered,
four stage Runga-Kutta scheme are clearly oscilla-
tory (Fig. 1) and may be deemed inappropriate for
unsteady calculations. It may be conjectured that

a time dependent artificial dissipation term could
improve this behavior, but at present no such treat-
ment exists.

Results from the one-step TVD Lax-Wendroff
method (Figs. 2-4) are superior to those obtained
from the centered scheme and illustrate the relative
advantages of the upwind method.

A popular means of extending these TVD con-
cepts to higher dimensions is through a multistep
scheme, which unfortunately can introduce undesir-
able errors. Figures 5 and 6 show that asymmetry
and oscillation can be introduced even into the one
dimensional problem and thus a formal extension to
higher dimensions may be ill advised.

The asymmetry produced by the Runga-Kutta
scheme occurs because of the effective limiter cre-
ated by the multi-step formulation. The use of an
identical symmetric limiter in each of the multiple
steps does not ingure an overall symmetric behavior.
The multi-stage formulation has the effect of gener-
ating nonlinear, spatially shifted terms of the form
¢ib;—1, which can no longer guarantee a symmetric
behavior. The use of different limiters in each step
would be an obvious way of addressing this asymme-
try and would introduce, in effect, MacCormack’s!®
predictor-corrector philosophy.

The multi-step formulation can also degrade,
with respect to the results from the one-step scheme,
the performance of the flux limiters. Liou'’s expo-
nential limiter, which performs well in the one-step
scheme, can be rendered non-TVD and oscillatory
in the multi-step formulation. This occurs because
the exponential limiter is TVD for

1
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which is unconditionally true only forn = 1. As n
increases, the limiter has the desirable behavior of
becoming less diffusive but also produces a more re-
strictive TVD condition. While this condition seems
not to be violated in the one-step scheme, it is in
fact compromised in the first step of the multi-step
formulation, thus allowing oscillations to develop. It
again becomes clear that formal extensions to higher
dimensions may be ill advised.

Despite the successes achieved in one-
dimension, the development of the ‘ultimate’ con-
vection scheme has proven elusive. Goodman and
LeVeque!® have shown that the desire for accuracy
higher than first order requires sacrificing the TVD
property in two-dimensions. The obvious next step
is to retain a nonoscillatory behavior despite losing
the TVD property. This is the rationale taken for
uniformly second order accurate nonoscillatory one-
dimensional methods.

To illustrate the dificulties associated with the
development of multidimensional schemes, the fol-
lowing categories are defined:



1) Omnidirectionally Nonoscillatory: No new
extremas are created in any arbitrary direction.

2) Preferred Direction Nonoscillatory: No new
extremas are created in a preferred direction.

3) Grid Aligned Nonoscillatory: No new ex-
tremas are created along at least one grid direction.

Most present day nonoscillatory schemes meet the
requirements of grid aligned nonoscillatory behavior,
while Davis’s® rotated scheme satisfies the definition
of preferred direction nonoscillation. Definitions 2
and 3 are necessary but not sufficient conditions for
an omnidirectional nonoscillatory behavior, which is
in fact unlikely to be satisfied by anything less than
the convection of the exact solution. This seem-
ingly bold statement can be illustrated by a one-
dimensional convection of a two-dimensional distri-
bution where dissipation along the convection direc-
tion can create new extremas in the cross stream
direction. A variation of Zalesak’s!” notched cylin-
der problem can be used to illustrate this point. A
notch, fourteen mesh cells wide and twenty mesh
cells deep, is cut out of a thirty mesh cell diameter
cylinder 0.75 unit wide and 0.5 unit high. This dis-
tribution, Fig.7, can be convected (forty time steps
at a Courant number of one half, on a uniform grid)
along the notch’s length-wise direction by a simple
first-order upwind scheme. The two-dimensional dis-
tribution uncouples into a series of one-dimensional
problems, each of which undergoes some amount of
amplitude damping. Since the distribution is two-
dimensional and no information is passed in the crosa
convection direction, the amplitude damping cannot
be applied uniformly and thus oscillations are cre-
ated in the cross-convection direction, Fig.8. As a
result, it would seem that even a first order TVD
scheme could be oscillatory in multidimensions, in-
dicating that the strict nonoscillatory property is
more restrictive than the TVD property, which is
the opposite of what is known to be true in one-
dimension. Based on this observation, one might
come to the conclusion that, since anything less than
an exact solution cannot guarantee nonoscillation,
there is little to be gained by trying to develop a
truly multidimensional formulation. However, this
conclusion would be short sighted, since one could
still make significant improvements in the accuracy
of unsteady calculations without having to satisfy
the strict nonoscillatory properties of definition 1.
In other words, the nonoscillatory property, like the
TVD property, is not the only measure of accuracy
and may have to be sacrificed, at least in practice,
by some other, yet to be established, definition of
‘goodness’.

3. Two-Dimensional Formulation

Consider the two-dimensional linear convection
equation:

- —+b—=0 8
+a + ( )
where

a=aly) and b="b(z)

This equation can be solved numerically, on a
uniform grid, by a scheme that interpolates grid
point data to the surfaces of an intermediate finite
volume; characteristically convects the surface data
to a midpoint time level; and updates the solution
with a midpoint rule time integration.

To insure the production of a nonoscillatory so-
lution, at least directionally, face values must be con-
structed in a nonoscillatory manner. To avoid exces-
sive amounts of damping, this interpolation must be
at least uniformly second order accurate.

A second order accurate, nonoscillatory interpo-
lation, which relies heavily upon a geometric inter-
pretation of the standard TVD concepts, has been
recently developed.” A one-dimensional interpola-
tion for a positive convection speed can be written:

Yip1/2 = Ui + S(AI/Z (9)

where S; is the slope of a piecewise linear distri-
bution of data over the intermediate finite volume
around each grid point. The slope associated with
the Minmod!? scheme can be defined as the median
of the slopes corresponding to first order upwind-
ing, central differencing, and second order Warming-

Beam upwinding. Thus the Minmod slope is

Median(0, uf“/, Uy, U — “5-1/2)
Az/2

Minmod __
s} =

(10)
where

Y1z = 0.5(u; + tit1) (11)

while the slope corresponding to Roe’s Superbee!?
scheme can be interpreted as:

O!u:':+1/2 - U,
Ui — “3-1/2!
Ui — Ui, Uipl — U
Azf2

Median

Sf uperbee =

(12)
These schemes are second order accurate in smooth
regions and first order accurate at extrema. To re-
move this first order behavior, Harten and Osher®
developed the uniformly second order accurate
UNO2 scheme., This scheme can be written as the
Minmod slope described above, but with a u/,,,;
value obtained from a nonoscillatory quadratic in-
terpolation:



uf_,,l/, = 0.5(u; + %i41) — 0.25D;41/2 (13)

where
D"+1/2 = minmod(D,—, D¢+1) (14)
D;‘ = Dt'+l - 2Dd + Dt'—l
and
minmod(a, b) =
sign(a)maz(0, sign(ab)min(|al, [6])) (15)

This geometric redefinition is rich in extensions
and has led to the development of Huynh’s SONIC
schemes.” By incorporating this new definition of
uf, /3 into the Superbee slope, one can produce
Huynh’s uniformly second order accurate SONIC-
B scheme, which is less dissipative than the UNO2
scheme. A further extension can be achieved by first
defining the slope:

uf - uf
P 3 Vi M e Vi 16
¢ = s o (10

and then using this value to construct a new slope:

SSONIC-4 _ Median(0,5%,55ONC-B)  (17)

This modification results in the SONIC-A scheme,
which is also uniformly second order accurate but
less overcompressive than the SONIC-B scheme.”
The median of three quantities, required in the
sonic interpolations, is evaluated as follows
median(z1, 3,23) = 21
+minmod(z; — 21,13 — z1) (18)

while the median of five quantities is evaluated as

median(z,, 22, Z3, 24, T5) = median(X1, X3, z¢)
1
where

X, = median(z,,z3,%3)
Xeo=z1+ 29+ 23+ 74
~ maz(zy,%3,23,Z4)
- rm'n(::l, Z32,Z3, :4) - XI
The SONIC interpolations are used in each di-
rection to construct surface data from the grid point
values at time level n. The surface data is then ad-

vanced to a midpoint time level using a characteristic
convection, which is based on a bilinear distribution

of data over a quarter of the intermediate finite vol
ume.

At time level n + 1/2, the surface data is eval-
uated by first following the characteristic back to
its spatial location at time level n and then by con-
structing its value from a bilinear distribution over
the corresponding quadrant’s corner values. These
quadrant values correspond to the intermediate cell’s
centered, face, and corner values. For positive con-
vection speeds a and b, the surface data at time level
n + 1/2 can be evaluated as:

n+1/2 alAt,

i+1/2.5 "?H/z.j - A_z(“n— 1/2,5 ~ “?.j)
bat, "
- Z‘y‘(“i-ﬂ/z.,' - “s’+1/2.j—1/2) (20)
abAt?

n )
AyAz("i-Q-l/:’,j Uit1/2.5~1/2
—ul; +ulioya)

where the corner value

u?+1/2“"__1/2 = O.S(I:Iy + IVIZ)U?'J' (21)

is evaluated as a symmetric product of I: and I,
the one dimensional sonic interpolation operators in
the z and y directions, respectively.

Once the surface data has been convected to the
time level n + 1/2, the finite volume fluxes are eval-
uated and the values at the grid points are updated
by the midpoint rule:

13 L3

Az
+1/2 +1/2
+ G:,H-{[z - G:.i-{/z
Ay

n+l _ . n __
uli =y~ At

+1/3 +1/2
(F‘:—x/z,;‘ - F":—1/2,j

(22)

where F = au and G = bu.
4. Results

A series of two-dimensional convection prob-
lems are used to illustrate the scheme’s ability to
resolve discontinuities that are neither aligned with,
nor convected along, grid lines.

Numerical results are obtained for the convec-
tion of a cone, box, and cylinder along arbitrary
flow directions of 0, 45, and 70 degrees. Calcula-
tions were performed on a uniform grid of 100x100
mesh cells for 100 time steps at a Courant number
of one half. Both the cone and cylinder have a 10
mesh cell radius of 0.25 unit long and are 4 units
high. The box has a 20 mesh cell square base of 0.5
unit wide and is also 4 units high. The numerical



results using the SONIC-A interpolation, Figures 9
to 20, show that the various corner, edge, and peak
discontinuities can be resolved for various flow an-
gles. The sharp edges associated with the box and
cylinder distributions are smoothed over a couple of
mesh cells while the magnitude of the cone’s peak is
reduced by about six to ten percent. This damping,
while not unexpected, has been kept to a minimum
on this relatively coarse grid. These calculations are
also nonoscillatory in that no trailing, leading, or
image oscillations are observed in any of these test
cases.

Results for the more difficult case of a rotat-
ing cone and cutout cylinder,!® Fig. 21, are also
included to demonstrate the scheme’s shock captur-
ing capabilities. Calculations were performed on a
uniform 100x100 mesh cell grid using the Minmod,
Superbee, SONIC-B, and SONIC-A interpolations.
Both the cone and the cylinder distributions have a
30 mesh cell diameter of 0.75 unit wide and an am-
plitude of 0.5 unit high. The cylinder’s notch is 6
mesh cells wide and 24 mesh cells deep. The cen-
ter of rotation is located at the grid center point,
P(50,50), while the cone is located at P(25,50) and
the cylinder is centered at P(75,50). These calcula-
tions were run for one and six complete rotations,
which correspond to 628 and 3768 time steps, re-
spectively. This solid body rotation, characterized
by the velocity field

a(y) = =(y — ww
b(z) = (z — zo)w

zo = z(50, 50) (23)
Yo = (50, 50)
w=0.1

is an extremely difficult test case since the Courant
number, dispersion, and damping errors vary in
magnitude throughout the domain, making the sym-
metric resolution of a symmetric problem highly un-
likely.

After one complete rotation, the discontinu-
ities are captured extremely well by the Superbee,
SONIC-B, and SONIC-A interpolations. The Min-
mod results, Fig.22, are extremely dissipative and
retain only the gross features of the initial distri-
butions. The Superbee calculation, Fig.23, resolves
the notched cylinder well but shows a slight over-
compression of the cone distribution. The SONIC-B
interpolation, Fig.24, results in a non-TVD steep-
ening of the notched cylinder’s narrow bridge but
has not overcompressed the cone. The SONIC-A in-
terpolation produces the best overall results, Fig.25,
since the discontinuities are captured without an ex-
cessive amount of overcompression or damping.

The results after six complete revolutions are
somewhat less encouraging. The Minmod calcula-
tion, Fig.26, has all but caused the distributions

to disappear. The Superbee interpolation, Fig.27,
again captures the notched cylinder extremely well
but compresses the cone into a cylindrical shape.
The SONIC-B results, Fig.28, are slightly less over-
compressive than the Superbee calculation, but are
asymmetric in form. The SONIC-A results are
greatly damped and no longer retain the cylinder’s
plateau region (Fig.29). However, the cone distribu-
tion, albeit dissipated, still retains much of its orig-
inal shape.

The performance of the SONIC-A interpolation
is the most desirable from the standpoint of being
able to retain the overall shapes of the original dis-
tributions. Since the SONIC-A interpolation is not
overcompressive, it does not transform gentle gra-
dients into steep ones, and thus retains the most
important features of the original distributions.

5. Concluding Remarks

A new upwind scheme, based on a uniformly
second order accurate nonoscillatory interpolation,
is developed for the multidimensional convection
equation. Numerical results illustrate the scheme’s
ability to resolve, without excessive amounts of dis-
persion or damping errors, discontinuities neither
aligned with, nor convected along, grid lines.

It is suggested that the strict nonoscillatory
property in multidimensions is unlikely to be sat-
isfied by anything less than the convection of the
exact solution and is more restrictive than the TVD
property. If one accepts this belief, it then becomes
obvious that a more practical definition of ‘goodness’
is needed for multidimensional problems.
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FIGURE 1. - CENTERED 4-STAGE RUNGA-KUTTA CALCULATION.
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FIGURE 2. - 1-STEP LAX-WENDROFF WITH SUPERBEE LIMITER.
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FIGURE 3. - 1-STEP LAX-WENDROFF WITH VAN LEER’S
LIMITER.
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FIGURE 4, - 1-STEP LAX-WENDROFF WITH LIOU’S EXPONEN-
TIAL LIMITER, N = 10,
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FIGURE 6. - 2-STEP LAX-WENDROFF WITH LIOU’S EXPONEN-
TIAL LIMITER. N = 10.
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FIGURE 7. - INITIAL COMDITION - 1-D CONVECTION.
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FIGURE 8. - 1-D CONVECTION OF THE 2-D DISTRIBUTION.
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FIGURE 11. - 45 DEGREE CONVECTION - CONE.

FIGURE 12. - 70 DEGREE CONVECTION - CONE.
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FIGURE 13. - INITIAL CONDITION - CYLINDER.
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FIGURE 15. - 45 DEGREE CONVECTION - CYLINDER.
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FIGURE 16. - 70 DEGREE CONVECTION - CYLINDER.

12



Ll

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

MINIMUM = 0. 1000

MAXTMUM
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FIGURE 19. - 45 DEGREE CONVECTION - BOX.
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FIGURE 20. - 70 DEGREE CONVECTION - BOX.
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FIGURE 21. - INITIAL CONDITION - SOLID BODY ROTATION.
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FIGURE 22. - 1 ROTATION - MINMOD INTERPOLATION,
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FIGURE 23. - 1 ROTATION -~ SUPERBEE INTERPOLATION.
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FIGURE 24. - 1 ROTATION - SONIC B INTERPOLATION.
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FIGURE 25. - 1 ROTATION - SONIC A INTERPOLATION.
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FIGURE 26. - 6 ROTATIONS - MINMOD INTERPOLATION.
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FIGURE 28. - 6 ROTATIONS - SONIC B INTERPOLATION.
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